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A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have 
been designed and synthesized asymmetrically. The absolute configurations and conformations of these 
types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously 
determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, 
which may play an important role for drug design, discovery, and development. Three propellers of 
turbo framework are covalently connected to a chiral C(sp3) center via C(sp2)–C(sp3) bonding along 
with a C–N axis, while one of them is orientated away from the same carbon chiral center. The turbo or 
propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (PPP) 
and counterclockwise (MMM), respectively. The turbo stereogenicity was found to depend on the center 
chirality of sulfonimine auxiliary instead of the chiral C(sp3) center, i.e., (S)- and (R)-sulfinyl centers 
led to the asymmetric formation of PPP- and MMM-configurations, respectively. Computational studies 
were conducted on relative energies for rotational barriers of a turbo target along the C–N anchor and 
the transition pathway between 2 enantiomers meeting our experimental observations. This work is 
anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.

Introduction

The origin of life is mainly about the origin of chirality since it 
has been found in all living creatures on Earth in forms varying 
from microscopic living organisms (e.g., helical bacteria) to 
macroscopic objects (e.g., sea shells) [1–5]. Several types of 
homochirality widely exist in functional biomolecules, such as 
DNA/RNA, peptides/proteins, and carbohydrates governing life 
processes [6–8]. In modern medicine, drug action processes of 
pharmaceuticals often depend on chirality to impose their potency 
and selectivity to reduce dosages and unwanted side effects 
[8–10]. In materials science, CPL (circularly polarized light) 
research has becoming increasingly active and important since 
controlling chirality of corresponding compounds and materials 
plays a crucial role to achieve challenging optoelectronic properties 
[11–15]. In chemical synthesis, asymmetric synthesis and cataly-
sis have been serving for these areas in the past half a century for 
generating new chiral small molecules and polymers in higher 
chemical yields and diastereo- and enantioselectivity [16–43].

The discovery and development of new chiral elements 
is an important aspect of research in organic chemistry and 

represents one of the most intriguing areas of asymmetric 
catalysis. So far, there have been following major types of chirality: 
central [16–18], axial [20–27], spiral [16,21], sandwich (metallic 
[35–36] and organo [42–47]), and turbo or propeller chirality 
in small molecules [48–50]; multilayer (rigid helical [13,51] 
and flexible folding [52,53]) and topological and inherent 
chirality [54,55] in macro and polymeric molecules. It is 
worth noting that our recent work on a new chirality, orienta-
tional chirality, is uniquely characterized by C(sp2)–C(sp3) 
or C(sp)–C(sp3) axis-anchored chiral centers and remotely 
anchored blockers [56–58] (Fig. 1). X-ray structural analysis 
has proven that individual orientational isomers can be stabi-
lized by through-space functional groups; this enables one R- 
or S-chiral center to give 3 orientatiomers by rotating along 
the C(sp2)–C(sp3) or C(sp)–C(sp3) axis. The orientational 
model was fundamentally different from the well-known 
Felkin–Ahn-type or Cram-type models in which chiral C(sp3) 
center and blocking C(sp2) carbons are adjacently anchored, 
leading to 6 energy barriers during rotating operation. However, 
in orientational chirality, there are 3 energy barriers for either 
(R)- or (S)-stereogenicity (Fig. 1). This is due to the fact that 
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there exists a the steric dialog between the chiral C(sp3) center 
and its remotely anchored blocker.

During our ongoing effort on seeking new orientational 
molecules, we now found that the chiral or achiral C(sp3) center 
can be surrounded by 3 planar moieties with 2 types of arrange-
ments of clockwise and counterclockwise fashions, which 
belong turbo or propeller chirality (Fig. 2). This turbo chirality 
originated from a chiral sulfur center of sulfinyl amide, which 
controls 3 chiral elements at the same time: C(sp3) central, ori-
entational, and turbo chirality. Surprisingly, the turbo chirality 
was solely controlled by the chiral sulfur center without being 
affected by the chiral C(sp3) center as proven by generating 
achiral C(sp3) centers as shown by x-ray diffraction analysis 
(Fig. 3). It is worth mentioning that over 75% of drugs contain 
amino functionality and more and more drugs have chiral 
center. The turbo amino chirality would provide more oppor-
tunities for chiral drug design and development in the future. 
Herein in this report, we would like to present our preliminary 
results on this new molecular framework.

Results
The present work was initiated by our design and synthesis of 
chiral unnatural amino acids with orientational chirality for 
peptide and protein research [8,56–58]. Introducing carboxylic 
ester and amine functionalities to the C(sp3) center would serve 
for this purpose. It is well known that in traditional amino 
acids, one (R)- or (S)-chiral carbon center only corresponds to 
one chiral amino acid isomer. However, the number of chiral 
amino acid isomers would be increased 3 times more if their 
orientational chirality is taken into account. The use of naphthyl 
ring as the structural template for the synthesis of orientational 
amino acid derivatives would serve for this purpose, which has 
been proven to be successful in our previous similar design. 
Obviously, the substitution of hydrogen atom on position 1 of 

naphthyl ring with larger moieties, such as Me, MeO, and Br, 
is anticipated to impose steric effects, so 1 of the 3 groups of 
the chiral C(sp3) center on naphthyl position 8 is pushed away 
from them. Bromine substitution is the first case we investi-
gated since we believe that heavy atom effect would benefit 
forming crystals for resulting products. Fortunately, based on 
this analysis, high-quality crystals of 2 individual enantiomers 
of the corresponding products were obtained smoothly. Their 
x-ray diffraction analysis proved that the phenyl ring of chiral 
carbon center is pushed away from the Br blocker, while iso-
propyl ester and N-sulfinyl groups are placed on each side of 
naphthyl ring in each case [(a)-M,M,M and (a)-P,P,P in Fig. 2].

The structural characteristics and nomenclature of the pres-
ent turbo or propeller chirality directly benefits from known 
chiral targets, especially those of chiroptical switch molecules 
invented by the Nobel laureate Ben L. Feringa [59]. In those 
cases, alkenes are used as a centrally overcrowded anchor and 

A

B

Fig. 1. Felkin–Ahn (A) and orientational (B) chirality models.

Fig. 2. Turbo chiral targets via 2 rotational operations along the C–N axis [orientational 
chirality was also shown by Ph being pushed away from Br].
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connected by 2 propeller blades with 2 chiral centers (Fig. 4). 
However, in our new targets, a chiral carbon center serves as a 
central anchor connected by 3 propellers and an amino moiety 
with chiral sulfur. As shown in Fig. 3, the chiral carbon center 
is unnecessary to achieve turbo chiral arrangement since 2 or 
3 identical aromatic rings can be attached onto it, still showing 
3 propellers of clockwise or anticlockwise arrangements 
depending on the chirality of amino protection auxiliary.

Asymmetric synthesis of turbo products is represented by 
assembling isopropyl 2-(8-bromonaphthalen-1-yl)-2-(((S)-tert-
butylsulfinyl)amino)-2-phenylacetate [(a)-M,M,M in Figs. 2 
and 5]. It was started by preparing the first building block 
A2 through dehydration of (R)-2-methylpropane-2-sulfinamide 
with ethyl 2-oxo-2-phenylacetate A1 by the use of Ti(OEt)4 
in dried tetrahydrofuran (THF) at 75 °C and then to room 
temperature to give isopropyl (R,Z)-2-((tert-butylsulfinyl)imino)-
2-phenylacetate A2 in a chemical yield of 85% (equation A, Fig. 5) 
[60,61]. 1,8-Dibromonaphthalene was pre-converted to its 
mono-lithium reagent by treating with butyllithium at −78 °C, 
which then proceeded electrophilic addition in situ to give 
isopropyl (R,Z)-2-((tert-butyl sulfinyl)imino)-2-phenylacetate A2 
at the same temperature for 2 h. Chromatographic purification 
afforded the final a single isomeric product of isopropyl 2-(8- 
bromonaphthalen-1-yl)-2-(((R)-tert-butyl sulfinyl) amino)-2- 
phenylacetate (a)-P,P,P in 70% yield (equation B, Fig. 5). 
The absolute configuration of this isomeric product has 
been unambiguously proven by its x-ray diffraction analysis 
as shown in Fig. 5.

The similar asymmetric assembly of the opposite enantiomer 
of(a)-P,P,P,isopropyl 2-(8-bromonaphthalen-1-yl)-2-(((S)-
tert-butylsulfinyl)amino)-2-phenylacetate [(a)-M,M,M] was 
performed by following the above procedure to give a chemical 
yield of 77% for the key step that is nearly identical to that 
of the former (Fig. 6). Its absolute configuration was also 
determined by x-ray diffraction analysis as shown in Fig. 6. 
Two x-ray structures clearly indicate turbo arrangements 
surrounding the chiral carbon center, showing that the (S)-
carbon, (R)-tert-butylsulfinyl group corresponds to clockwise 
and (R)-carbon, (S)-tert-butylsulfinyl group to anti-clockwise 
(Figs. 5 and 6).

Along with the generation of isomeric product (a)-P,P,P, we 
expend this approach to a series of other turbo isomeric prod-
ucts by retaining 8-bromonaphthalen-1-yl substructure and 

changing Ph ring to other aromatic counterpart at first (Fig. 6). 
Symmetrically substituted 4-methyl and isopropyl phenyl sub-
strates afforded turbo isomeric products, (e)-P,P,P and (f)-P,P,P, 
in chemical yields of 63% and 58%, respectively. The use 
of stronger electron-donation groups, MeO-[(g)-P,P,P] and 
nPro-[(h)-P,P,P] chemical yields of 80% and 55%, were obtained 
with a much higher yield for the former case but an almost 
identical yield for the latter. Three para-halogenated aryl 
(4-Br-, 4-Cl, and 4-F) and one ortho- and meta-F-Ph all 
resulted in turbo chiral products in chemical yields ranging 
from 56% to 81% [(i)-P,P,P to (m)-P,P,P; Fig. 6]. One strong 
electron-withdrawing group, 4-CF3-Ph-attached aryl substrate, 
also worked well to give 67% yield ((n)-P,P,P). Second, the sub-
strate change was made on the remaining 8-bromonaphthalen-
1-yl substructure by replacing bromine with 3 other groups, 
Me-, MeO-, and Ac. Chemical yields of 71%, 85%, and 65% were 
achieved, respectively. The last substrate modification was 
made by introducing 2 MeO groups onto positions 2 and 7 of 
8-bromonaphthalen-1-yl substructure. The expected turbo chiral 
product, isopropyl 2-(8-bromo-2,7-dimethoxynaphthalen-1-yl)-
2-(((R)-tert-butylsulfinyl)amino)-2-phenylacetate (r)-P,P,P, was 
generated in 66% yield. Third, the substrate change was made by 
changing both iso-propyl ester to heterocycles of furan and 
thiophen and 8-bromonaphthalen-1-yl to 8-methoxylnaphthalen-
1-yl counterpart. Individual enantiomers of (R)-N-(furan-3-
y l(8-methoxynaphtha len-1-y l)(phenyl)methy l)-2- 
methylpropane-2-sulfinamide [(s)-P,P,P; Fig. 7] and (R)-N- 
((8-methoxynaphthalen-1-yl)(phenyl)(thiophen-2-yl)
methyl)-2-methylpropane-2-sulfinamide [(t)-P,P,P; Fig. 7] 
were obtained in yields of 48% and 73%, respectively. More 

Fig. 3. Turbo chiral molecules centered by achiral carbon.

Fig. 4. Optical switching molecules centered by alkene.
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importantly, x-ray diffraction analysis revealed that both these 
turbo products display obvious clockwise absolute configura-
tions, and both propeller blades of furan and thiophen rings 
are directed down-side away from sulfinyl group on chiral car-
bon center (Fig. 7).

To investigate whether chiral sulfur or carbon center control 
the turbo chirality predominantly, we utilized 2 and/or 3 
identical aromatic groups to be anchored onto the central sp3-
carbon by using (R)-N-(di-tolylmethylene)-2-methylpropane- 
2-sulfinamide and (S)-N-(di(naphthalen-1-yl)methylene)-
2-methylpropane-2-sulfinamide as electrophilic acceptors. 
These receptors that reacted with corresponding ArLi to give 
(R)-N-(di-p-tolylmethylene)-2-methylpropane-2-sulfinamide, 
(S)-N-(di-o-tolylmethylene)-2-methylpropane-2-sulfinamide, 
and (S)-N-(di(naphthalen-1-yl)methylene)-2-methylpropane-2- 
sulfinamide were synthesized in chemical yields of 47% [(b)-
P,P,P], 60% [(c)-M,M,M], and 55% [(d)-M,M,M], respectively. 
To our pleasure, we were able to get good-quality crystals of 
these 3 turbo chiral products for x-ray structural analysis. 
Their x-ray structures confirmed that absolute turbo chirality 
depends on configuration of sulfur of sulfinamide instead of 
their sp3 carbon centers. This means that (R)-N-propane-2-
sulfinyl auxiliary leads to the formation of P,P,P-turbo chirality 
and (S)-N-propane-2-sulfinyl auxiliary results in the opposite 
M,M,M-turbo chirality. This conclusion can also be proven by 
the other 4 x-ray structures of 2 pairs of enantiomers control-
ling 2 opposite chiral auxiliaries as shown in Figs. 5 to 7.

We further employed quantum mechanics (QM) calcula-
tions at the density functional theory (DFT) level of theory to 
characterize the potential energies of stationary points (minima 
and transition states) along the minimum energy pathway 
(MEP) connecting (d)-M,M,M and (d)-P,P,P [62–72] (Fig. 8). 
These 2 enantiomers are referred to as Enantiomers 1 and 2 
below, respectively. The results are summarized in Fig. 9. The 
computational results support the experimental findings that the 
center chirality of the sulfonimine auxiliary thermodynamically 

controls the turbo chirality of the 3 naphthalene rings. In par-
ticular, comparing Intermediate 1 and Enantiomer 1, which share 
the same center chirality of the sulfonimine auxiliary but differ 
in the turbo chirality of the 3 naphthalene rings, Intermediate 
1 is 2.5 kcal/mol higher in energy due to changing the turbo 
chirality of the 3 rings. In other words, the lower energy of 
Enantiomer 1 perhaps arises from the more favorable van der 
Waals interaction between the sulfonimine auxiliary and the 
3 hydrophobic naphthalene rings oriented in this chiral configu-
ration. Thus, at equilibrium, the chirality of the sulfonimine 
auxiliary results in a higher population of the MMM turbo 
chiral configuration in Enantiomer 1 than the PPP configura-
tion observed in Intermediate 1.

The transition between the 2 chiral configurations of 3 
naphthalene rings is also kinetically slow. The TS separating 
Enantiomer 1 and Intermediate 1 has a high energy of 20.9 kcal/
mol, implying a slow rate for changing the turbo chirality of 
the 3 rings, contributing to the kinetic stability of Enantiomer 
1. The inversion of the central chirality of the sulfonimine 
auxiliary converts Intermediate 1 to Enantiomer 2. Enantiomer 
2 is the mirror image of Enantiomer 1 and thus has the same 
energy as the latter. Starting from Intermediate 1, the inversion 
of the sulfonimine auxiliary’s chirality needs to overcome a 
high kinetic barrier of 55.7 kcal/mol, leading to a significant 
overall kinetic barrier of 58.2 kcal/mol separating Enantiomers 
1 and 2.

The extended computational work is currently being 
extended to other atom-centered turbo molecular frameworks 
in our laboratories. It is worth mentioning that although tri- 
or tetra-aromatic rings surrounding P- and C-centered com-
pounds have been widely reported in literature [21–22,42,73–88], 
their turbo chirality patterns have not been paid attention for 
a while until recently when several groups were involved in this 
research (Fig. 10 and Supplementary Materials) [48–50,83–86]. 
In addition, we also found that turbo chirality exists in diaryl 
ethers with 2 propeller blades [88–91] and in multiple aryl 

Fig 5. Asymmetric synthesis of turbo chiral (a)-P,P,P and its x-ray structure.
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Fig. 6. Scope of asymmetric synthesis of turbo chiral compounds.

Fig. 7. Turbo chirality targets with heterocycles.
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ring-anchored structures with tri or tetra propeller blades 
([87,92,93] and Supplementary Materials).

Discussion
We have designed and synthesized new chiral targets contain-
ing central, orientational, and turbo chirality surrounding a 
C–N axis. The chirality is efficiently controlled by sulfonimine 
auxiliary via asymmetric nucleophilic carbonyl addition reac-
tion. The resulting configurations and conformations have been 
unambiguously confirmed by x-ray diffraction analysis. The 
turbo atropisomers are characterized by 2 types of molecular 
clockwise and counterclockwise arrangements of structural 
blades. The absolute PPP- and MMM-stereogenicity was proven 
to depend on the center chirality of sulfonimine auxiliary, i.e., 
(S)- and (R)-sulfinyl centers led to the asymmetric formation 
of complete PPP- and MMM-configurations, respectively, 
regardless of the center chirality of C(sp3) joint. This was con-
firmed by attaching 2 or 3 identical aromatic blades onto the 
C(sp3) joint of the C–N axis. Computational studies were per-
formed to characterize the energy of the intermediate state and 
the barriers along the MEP between 2 enantiomers of (d). The 
computational results support our experimental finding that 
the turbo chirality of the compound is thermodynamically 
controlled by the center chirality of the sulfonimine auxiliary. 
Meanwhile, the chirality inversion of the sulfonimine auxiliary 
is the rate-limiting step for the transition between the PPP- and 

MMM-configurations. The high barriers along the reaction 
pathway prevent facile transition between them, allowing for 
the separation of distinct kinetically stable enantiomers in the 
experiment. The present turbo chirality work would be antici-
pated by enhancing a new stereochemistry topic and to have a 
broad impact on chemical, biomedical, and material sciences 
in the future.

Materials and Methods
Unless otherwise stated, all reactions were magnetically stirred 
and conducted in oven-dried glassware in anhydrous solvents 
under Ar, applying standard Schlenk techniques. Solvents 
and liquid reagents, as well as solutions of solid or liquid 
reagents were added via syringes, stainless steel, or polyethylene 
cannulas through rubber septa or through a weak Ar counter-
flow. Solvents were removed under reduced pressure at 40 to 
65 °C using a rotavapor. All given yields are isolated yields of 
chromatographic and NMR spectroscopic materials. All com-
mercially available chemicals were used as received without 
further purification.

1H and 13C nuclear magnetic resonance (NMR) spectra were 
recorded in CDCl3 on 400-MHz instruments with trimethylsilyl 
(TMS) as internal standard. For referencing of the 1H NMR 
spectra, the residual solvent signal (δ = 7.26 ppm for CDCl3) 
was used. In the case of the 13C NMR spectra, the signal of 
solvent (δ = 77.0 ppm for CDCl3) was used. Chemical shifts 

Fig. 8. Turbo chirality targets with achiral C(sp3)-center.
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(δ) were reported in ppm with respect to TMS. Data are rep-
resented as follows: chemical shift, multiplicity (s = singlet, 
d = doublet, t = triplet, m = multiplet), coupling constant 
(J, Hz), and integration. Optical rotations were measured with 
a Rudolph Research Analytical APIV/2 W Polarimeter at the 

indicated temperature with a sodium lamp. Measurements were 
performed in a 2-ml vessel with the concentration unit of 
g/100 ml in the corresponding solvents.

 The details of computational methods are included in the 
Supplementary Materials, which include the selection of initial 

Fig. 9. Energy diagram for the reaction pathway from Enantiomer 1 to Enantiomer 2, which are mirror images of each other. The first stage of the pathway is the simultaneous 
flipping of the 3 naphthalene rings, overcoming transition state 1 (TS1) and resulting in an intermediate (Int1). The second stage is the inversion of the sulfonimine auxiliary, 
overcoming transition state 2 (TS2) and resulting in an Enantiomer 2. Structures of the stationary points along the pathway (minima and transition states) are illustrated 
below the energy diagram. Key functional groups are labeled, including the central atoms (C, N, S, O atoms) in the axis of the ring-flipping motion. All energies are evaluated 
using the B3LYP-D3/def2-TZVP method at the stationary points optimized with the B3LYP-D3/def2-SVP method. The zero point energy (ZPE) corrections have been included 
at the B3LYP-D3/def2-SVP level of theory at the optimized stationary points. The higher energy of Int1 than Enantiomer 1 and 2 indicates that the sulfonimine auxiliary 
thermodynamically controls the turbo chirality of the 3 naphthalene rings. Also, the considerable kinetic barriers for both stages of the transition contribute to the kinetic 
stability of the 2 enantiomers.

Fig. 10. Turbo chirality with 2 units of triple propeller blades of chiral ligands and complex.
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geometries, the QM level of theory, and the optimization of the 
stationary points along the reaction pathway.
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